Ultra high molecular-weight polyethylene (UHMWPE) in total knee replacement: fabrication, sterilisation and wear.
نویسندگان
چکیده
THE JOURNAL OF BONE AND JOINT SURGERY G. Blunn, PhD, Professor The Centre for Biomedical Engineering, Institute of Orthopaedics, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK. E. M. Brach del Preva, MD, Associate Professor Department of Traumatology and Orthopaedics, University of Turin, Via Zuretti 29, 10126 Turin, Italy. L. Costa, PhD, Professor IFM Chemistry Department, University of Turin, Via Giuria 7, 10125 Turin, Italy. J. Fisher, BSc, PhD, Deng Ceng FIMechE, Professor of Mechanical Engineering School of Mechnical Engineering, University of Leeds, Leeds LS2 9JT, UK. M. A. R. Freeman, MD, FRCS, Honorary Consultant Orthopaedic Surgeon The Royal London Hospital, Whitechapel Road, Whitechapel, London E1 1BB, UK
منابع مشابه
Investigation of Wear Behavior of Biopolymers for Total Knee Replacements Through Invitro Experimentation
The average life span of knee prosthesis used in Total Knee Replacement (TKR) is approximately 10 to 15 years. Literature indicates that the reasons for implant failures include wear, infection, instability, and stiffness. However, the majority of failures are due to wear and tear of the prosthesis. The most common biopolymer used in TKR is Ultra High Molecular Weight Polyethylene (UHMWPE). Pr...
متن کاملReduction of Wear in Fixed Bearing Total Knee Replacement Using Crosslinked Uhmwpe
Introduction Reduction of ultra high molecular weight polyethylene (UHMWPE) surface wear in total knee replacement (TKR) bearings may delay the onset of osteolysis and subsequent loosening of components. Crosslinking has been shown to increase the wear resistance of UHMWPE bearings in multidirectional total hip replacement applications when articulating against smooth counterfaces [1]. The aim ...
متن کاملReduction of Total Knee Replacement Wear with Vitamin E doped highly cross linked UHMWPE
Introduction: Ultra high molecular weight polyethylene (UHMWPE) is a common bearing component in Total Knee Replacement (TKR) implants, and its susceptibility to wear continues to be the long-term limiting factor in the life of these implants. Novel material modifications have been introduced to reduce UHMWPE wear rates and thus improve the life of TKRs. Radiation and crosslinking of UHMWPE hav...
متن کاملComputational Prediction of in Vivo Wear in Total Knee Replacements
INTRODUCTION Wear of ultra-high molecular weight polyethylene (UHMWPE) in total knee replacements remains a major limitation to the longevity of these clinically successful devices [1]. Improvements in sterilization techniques over the past decade have reduced oxidative degradation of the UHMWPE bearing, with potentially dramatic long-term reductions in fatigue-related pitting and delamination ...
متن کاملCross-linked Polyethylene Engineered for TKA
Introduction It is well known that the wear resistance of ultra-high molecular weight polyethylene (UHMWPE) improves in proportion to the crosslinking irradiation dose. It is also well known that the mechanical properties and oxidative stability of UHMWPE are affected by the irradiation dose, resin type, and post-irradiation heat treatment, among others factors. Therefore, careful consideration...
متن کاملEffects of Tibial Insert Slope on Polyethylene Wear and Stress
INTRODUCTION: Both posterior stabilized (PS) and cruciate retaining (CR) total knee replacement systems have demonstrated high rates of survivorship, high clinical knee scores and high patient satisfaction scores for decades. However, CR total knees sometimes exhibit more varied kinematics and a smaller range of motion than similar PS knees. Many factors can cause this, but one important factor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of bone and joint surgery. British volume
دوره 84 7 شماره
صفحات -
تاریخ انتشار 2002